Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Nat Immunol ; 25(4): 644-658, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38503922

RESUMO

The organization of immune cells in human tumors is not well understood. Immunogenic tumors harbor spatially localized multicellular 'immunity hubs' defined by expression of the T cell-attracting chemokines CXCL10/CXCL11 and abundant T cells. Here, we examined immunity hubs in human pre-immunotherapy lung cancer specimens and found an association with beneficial response to PD-1 blockade. Critically, we discovered the stem-immunity hub, a subtype of immunity hub strongly associated with favorable PD-1-blockade outcome. This hub is distinct from mature tertiary lymphoid structures and is enriched for stem-like TCF7+PD-1+CD8+ T cells, activated CCR7+LAMP3+ dendritic cells and CCL19+ fibroblasts as well as chemokines that organize these cells. Within the stem-immunity hub, we find preferential interactions between CXCL10+ macrophages and TCF7-CD8+ T cells as well as between mature regulatory dendritic cells and TCF7+CD4+ and regulatory T cells. These results provide a picture of the spatial organization of the human intratumoral immune response and its relevance to patient immunotherapy outcomes.


Assuntos
Neoplasias Pulmonares , Humanos , Linfócitos T CD8-Positivos , Receptor de Morte Celular Programada 1 , Quimiocinas/metabolismo , Imunoterapia/métodos , Microambiente Tumoral
2.
Immunity ; 57(3): 406-408, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38479356

RESUMO

Combined anti-PD-L1+anti-CTLA-4 therapy has shown benefits over anti-PD-L1 monotherapy as a neoadjuvant treatment in head and neck cancer. In this issue of Immunity, Franken et al. report that CD4+ T cell trafficking from lymph nodes to tumors and expansion toward T helper 1 cells are features specific to combination therapy.


Assuntos
Neoplasias de Cabeça e Pescoço , Humanos , Antígeno CTLA-4 , Terapia Combinada , Antígeno B7-H1
4.
bioRxiv ; 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37066412

RESUMO

The organization of immune cells in human tumors is not well understood. Immunogenic tumors harbor spatially-localized multicellular 'immunity hubs' defined by expression of the T cell-attracting chemokines CXCL10/CXCL11 and abundant T cells. Here, we examined immunity hubs in human pre-immunotherapy lung cancer specimens, and found that they were associated with beneficial responses to PD-1-blockade. Immunity hubs were enriched for many interferon-stimulated genes, T cells in multiple differentiation states, and CXCL9/10/11 + macrophages that preferentially interact with CD8 T cells. Critically, we discovered the stem-immunity hub, a subtype of immunity hub strongly associated with favorable PD-1-blockade outcomes, distinct from mature tertiary lymphoid structures, and enriched for stem-like TCF7+PD-1+ CD8 T cells and activated CCR7 + LAMP3 + dendritic cells, as well as chemokines that organize these cells. These results elucidate the spatial organization of the human intratumoral immune response and its relevance to patient immunotherapy outcomes.

5.
Nat Protoc ; 18(5): 1416-1440, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36792778

RESUMO

Natural sequence variation within mitochondrial DNA (mtDNA) contributes to human phenotypes and may serve as natural genetic markers in human cells for clonal and lineage tracing. We recently developed a single-cell multi-omic approach, called 'mitochondrial single-cell assay for transposase-accessible chromatin with sequencing' (mtscATAC-seq), enabling concomitant high-throughput mtDNA genotyping and accessible chromatin profiling. Specifically, our technique allows the mitochondrial genome-wide inference of mtDNA variant heteroplasmy along with information on cell state and accessible chromatin variation in individual cells. Leveraging somatic mtDNA mutations, our method further enables inference of clonal relationships among native ex vivo-derived human cells not amenable to genetic engineering-based clonal tracing approaches. Here, we provide a step-by-step protocol for the use of mtscATAC-seq, including various cell-processing and flow cytometry workflows, by using primary hematopoietic cells, subsequent single-cell genomic library preparation and sequencing that collectively take ~3-4 days to complete. We discuss experimental and computational data quality control metrics and considerations for the extension to other mammalian tissues. Overall, mtscATAC-seq provides a broadly applicable platform to map clonal relationships between cells in human tissues, investigate fundamental aspects of mitochondrial genetics and enable additional modes of multi-omic discovery.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação , Cromatina , Animais , Humanos , Cromatina/genética , Multiômica , Análise de Sequência de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , DNA Mitocondrial/genética , Genótipo , Mamíferos/genética
6.
Nature ; 615(7950): 158-167, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36634707

RESUMO

Despite the success of PD-1 blockade in melanoma and other cancers, effective treatment strategies to overcome resistance to cancer immunotherapy are lacking1,2. Here we identify the innate immune kinase TANK-binding kinase 1 (TBK1)3 as a candidate immune-evasion gene in a pooled genetic screen4. Using a suite of genetic and pharmacological tools across multiple experimental model systems, we confirm a role for TBK1 as an immune-evasion gene. Targeting TBK1 enhances responses to PD-1 blockade by decreasing the cytotoxicity threshold to effector cytokines (TNF and IFNγ). TBK1 inhibition in combination with PD-1 blockade also demonstrated efficacy using patient-derived tumour models, with concordant findings in matched patient-derived organotypic tumour spheroids and matched patient-derived organoids. Tumour cells lacking TBK1 are primed to undergo RIPK- and caspase-dependent cell death in response to TNF and IFNγ in a JAK-STAT-dependent manner. Taken together, our results demonstrate that targeting TBK1 is an effective strategy to overcome resistance to cancer immunotherapy.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Evasão da Resposta Imune , Imunoterapia , Proteínas Serina-Treonina Quinases , Humanos , Evasão da Resposta Imune/genética , Evasão da Resposta Imune/imunologia , Imunoterapia/métodos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Organoides , Fatores de Necrose Tumoral/imunologia , Interferon gama/imunologia , Esferoides Celulares , Caspases , Janus Quinases , Fatores de Transcrição STAT
7.
Nat Med ; 29(2): 458-466, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36702949

RESUMO

While BRAF inhibitor combinations with EGFR and/or MEK inhibitors have improved clinical efficacy in BRAFV600E colorectal cancer (CRC), response rates remain low and lack durability. Preclinical data suggest that BRAF/MAPK pathway inhibition may augment the tumor immune response. We performed a proof-of-concept single-arm phase 2 clinical trial of combined PD-1, BRAF and MEK inhibition with sparatlizumab (PDR001), dabrafenib and trametinib in 37 patients with BRAFV600E CRC. The primary end point was overall response rate, and the secondary end points were progression-free survival, disease control rate, duration of response and overall survival. The study met its primary end point with a confirmed response rate (24.3% in all patients; 25% in microsatellite stable patients) and durability that were favorable relative to historical controls of BRAF-targeted combinations alone. Single-cell RNA sequencing of 23 paired pretreatment and day 15 on-treatment tumor biopsies revealed greater induction of tumor cell-intrinsic immune programs and more complete MAPK inhibition in patients with better clinical outcome. Immune program induction in matched patient-derived organoids correlated with the degree of MAPK inhibition. These data suggest a potential tumor cell-intrinsic mechanism of cooperativity between MAPK inhibition and immune response, warranting further clinical evaluation of optimized targeted and immune combinations in CRC. ClinicalTrials.gov registration: NCT03668431.


Assuntos
Neoplasias Colorretais , Melanoma , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Receptor de Morte Celular Programada 1/genética , Melanoma/patologia , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Neoplasias Colorretais/genética , Mutação , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Piridonas/uso terapêutico , Pirimidinonas/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia
8.
Front Immunol ; 13: 884185, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35634333

RESUMO

Immune responses in human tissues rely on the concerted action of different cell types. Inter-cellular communication shapes both the function of the multicellular interaction networks and the fate of the individual cells that comprise them. With the advent of new methods to profile and experimentally perturb primary human tissues, we are now in a position to systematically identify and mechanistically dissect these cell-cell interactions and their modulators. Here, we introduce the concept of multicellular hubs, functional modules of immune responses in tissues. We outline a roadmap to discover multicellular hubs in human tissues and discuss how emerging technologies may further accelerate progress in this field.


Assuntos
Comunicação Celular , Comunicação , Humanos
9.
Cell ; 184(26): 6262-6280.e26, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34910928

RESUMO

Colorectal cancers (CRCs) arise from precursor polyps whose cellular origins, molecular heterogeneity, and immunogenic potential may reveal diagnostic and therapeutic insights when analyzed at high resolution. We present a single-cell transcriptomic and imaging atlas of the two most common human colorectal polyps, conventional adenomas and serrated polyps, and their resulting CRC counterparts. Integrative analysis of 128 datasets from 62 participants reveals adenomas arise from WNT-driven expansion of stem cells, while serrated polyps derive from differentiated cells through gastric metaplasia. Metaplasia-associated damage is coupled to a cytotoxic immune microenvironment preceding hypermutation, driven partly by antigen-presentation differences associated with tumor cell-differentiation status. Microsatellite unstable CRCs contain distinct non-metaplastic regions where tumor cells acquire stem cell properties and cytotoxic immune cells are depleted. Our multi-omic atlas provides insights into malignant progression of colorectal polyps and their microenvironment, serving as a framework for precision surveillance and prevention of CRC.


Assuntos
Pólipos do Colo/patologia , Neoplasias Colorretais/patologia , Microambiente Tumoral , Imunidade Adaptativa , Adenoma/genética , Adenoma/patologia , Adulto , Idoso , Animais , Carcinogênese/genética , Carcinogênese/patologia , Morte Celular , Diferenciação Celular , Pólipos do Colo/genética , Pólipos do Colo/imunologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Heterogeneidade Genética , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Mutação/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , RNA-Seq , Reprodutibilidade dos Testes , Análise de Célula Única , Microambiente Tumoral/imunologia
10.
Cell ; 184(18): 4734-4752.e20, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34450029

RESUMO

Immune responses to cancer are highly variable, with mismatch repair-deficient (MMRd) tumors exhibiting more anti-tumor immunity than mismatch repair-proficient (MMRp) tumors. To understand the rules governing these varied responses, we transcriptionally profiled 371,223 cells from colorectal tumors and adjacent normal tissues of 28 MMRp and 34 MMRd individuals. Analysis of 88 cell subsets and their 204 associated gene expression programs revealed extensive transcriptional and spatial remodeling across tumors. To discover hubs of interacting malignant and immune cells, we identified expression programs in different cell types that co-varied across tumors from affected individuals and used spatial profiling to localize coordinated programs. We discovered a myeloid cell-attracting hub at the tumor-luminal interface associated with tissue damage and an MMRd-enriched immune hub within the tumor, with activated T cells together with malignant and myeloid cells expressing T cell-attracting chemokines. By identifying interacting cellular programs, we reveal the logic underlying spatially organized immune-malignant cell networks.


Assuntos
Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Proteínas Morfogenéticas Ósseas/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Compartimento Celular , Linhagem Celular Tumoral , Quimiocinas/metabolismo , Estudos de Coortes , Neoplasias Colorretais/genética , Reparo de Erro de Pareamento de DNA/genética , Células Endoteliais/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Imunidade , Inflamação/patologia , Monócitos/patologia , Células Mieloides/patologia , Neutrófilos/patologia , Células Estromais/metabolismo , Linfócitos T/metabolismo , Transcrição Gênica
11.
Cell Rep Med ; 2(5): 100287, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33969320

RESUMO

Mechanisms underlying severe coronavirus disease 2019 (COVID-19) disease remain poorly understood. We analyze several thousand plasma proteins longitudinally in 306 COVID-19 patients and 78 symptomatic controls, uncovering immune and non-immune proteins linked to COVID-19. Deconvolution of our plasma proteome data using published scRNA-seq datasets reveals contributions from circulating immune and tissue cells. Sixteen percent of patients display reduced inflammation yet comparably poor outcomes. Comparison of patients who died to severely ill survivors identifies dynamic immune-cell-derived and tissue-associated proteins associated with survival, including exocrine pancreatic proteases. Using derived tissue-specific and cell-type-specific intracellular death signatures, cellular angiotensin-converting enzyme 2 (ACE2) expression, and our data, we infer whether organ damage resulted from direct or indirect effects of infection. We propose a model in which interactions among myeloid, epithelial, and T cells drive tissue damage. These datasets provide important insights and a rich resource for analysis of mechanisms of severe COVID-19 disease.

12.
Int J Mol Sci ; 22(4)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557133

RESUMO

The interaction and crosstalk of Toll-like receptors (TLRs) is an established pathway in which the innate immune system recognises and fights pathogens. In a single nucleotide polymorphisms (SNP) analysis of an Indian cohort, we found evidence for both TLR4-399T and TRL8-1A conveying increased susceptibility towards tuberculosis (TB) in an interdependent manner, even though there is no established TLR4 ligand present in Mycobacterium tuberculosis (Mtb), which is the causative pathogen of TB. Docking studies revealed that TLR4 and TLR8 can build a heterodimer, allowing interaction with TLR8 ligands. The conformational change of TLR4-399T might impair this interaction. With immunoprecipitation and mass spectrometry, we precipitated TLR4 with TLR8-targeted antibodies, indicating heterodimerisation. Confocal microscopy confirmed a high co-localisation frequency of TLR4 and TLR8 that further increased upon TLR8 stimulation. The heterodimerisation of TLR4 and TLR8 led to an induction of IL12p40, NF-κB, and IRF3. TLR4-399T in interaction with TLR8 induced an increased NF-κB response as compared to TLR4-399C, which was potentially caused by an alteration of subsequent immunological pathways involving type I IFNs. In summary, we present evidence that the heterodimerisation of TLR4 and TLR8 at the endosome is involved in Mtb recognition via TLR8 ligands, such as microbial RNA, which induces a Th1 response. These findings may lead to novel targets for therapeutic interventions and vaccine development regarding TB.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Mycobacterium tuberculosis/imunologia , Receptor 4 Toll-Like/metabolismo , Receptor 8 Toll-Like/metabolismo , Tuberculose/imunologia , Tuberculose/metabolismo , Alelos , Biomarcadores , Estudos de Casos e Controles , Linhagem Celular , Estudos de Coortes , Genótipo , Interações Hospedeiro-Patógeno/genética , Humanos , Espectrometria de Massas , Modelos Moleculares , Polimorfismo de Nucleotídeo Único , Conformação Proteica , Relação Estrutura-Atividade , Receptor 4 Toll-Like/química , Receptor 8 Toll-Like/química , Tuberculose/microbiologia
13.
Nat Biotechnol ; 39(4): 451-461, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32788668

RESUMO

Natural mitochondrial DNA (mtDNA) mutations enable the inference of clonal relationships among cells. mtDNA can be profiled along with measures of cell state, but has not yet been combined with the massively parallel approaches needed to tackle the complexity of human tissue. Here, we introduce a high-throughput, droplet-based mitochondrial single-cell assay for transposase-accessible chromatin with sequencing (scATAC-seq), a method that combines high-confidence mtDNA mutation calling in thousands of single cells with their concomitant high-quality accessible chromatin profile. This enables the inference of mtDNA heteroplasmy, clonal relationships, cell state and accessible chromatin variation in individual cells. We reveal single-cell variation in heteroplasmy of a pathologic mtDNA variant, which we associate with intra-individual chromatin variability and clonal evolution. We clonally trace thousands of cells from cancers, linking epigenomic variability to subclonal evolution, and infer cellular dynamics of differentiating hematopoietic cells in vitro and in vivo. Taken together, our approach enables the study of cellular population dynamics and clonal properties in vivo.


Assuntos
DNA Mitocondrial/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mitocôndrias/genética , Neoplasias/genética , Análise de Célula Única/métodos , Idoso de 80 Anos ou mais , Diferenciação Celular , Células Cultivadas , Evolução Clonal , Células Clonais , Epigênese Genética , Feminino , Técnicas de Genotipagem , Hematopoese , Humanos , Mutação , Análise de Sequência de DNA
14.
bioRxiv ; 2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33173871

RESUMO

COVID-19 has caused over 1 million deaths globally, yet the cellular mechanisms underlying severe disease remain poorly understood. By analyzing several thousand plasma proteins in 306 COVID-19 patients and 78 symptomatic controls over serial timepoints using two complementary approaches, we uncover COVID-19 host immune and non-immune proteins not previously linked to this disease. Integration of plasma proteomics with nine published scRNAseq datasets shows that SARS-CoV-2 infection upregulates monocyte/macrophage, plasmablast, and T cell effector proteins. By comparing patients who died to severely ill patients who survived, we identify dynamic immunomodulatory and tissue-associated proteins associated with survival, providing insights into which host responses are beneficial and which are detrimental to survival. We identify intracellular death signatures from specific tissues and cell types, and by associating these with angiotensin converting enzyme 2 (ACE2) expression, we map tissue damage associated with severe disease and propose which damage results from direct viral infection rather than from indirect effects of illness. We find that disease severity in lung tissue is driven by myeloid cell phenotypes and cell-cell interactions with lung epithelial cells and T cells. Based on these results, we propose a model of immune and epithelial cell interactions that drive cell-type specific and tissue-specific damage in severe COVID-19.

15.
Cell ; 182(6): 1474-1489.e23, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32841603

RESUMO

Widespread changes to DNA methylation and chromatin are well documented in cancer, but the fate of higher-order chromosomal structure remains obscure. Here we integrated topological maps for colon tumors and normal colons with epigenetic, transcriptional, and imaging data to characterize alterations to chromatin loops, topologically associated domains, and large-scale compartments. We found that spatial partitioning of the open and closed genome compartments is profoundly compromised in tumors. This reorganization is accompanied by compartment-specific hypomethylation and chromatin changes. Additionally, we identify a compartment at the interface between the canonical A and B compartments that is reorganized in tumors. Remarkably, similar shifts were evident in non-malignant cells that have accumulated excess divisions. Our analyses suggest that these topological changes repress stemness and invasion programs while inducing anti-tumor immunity genes and may therefore restrain malignant progression. Our findings call into question the conventional view that tumor-associated epigenomic alterations are primarily oncogenic.


Assuntos
Cromatina/metabolismo , Cromossomos/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Metilação de DNA , Epigênese Genética , Regulação Neoplásica da Expressão Gênica/genética , Divisão Celular , Senescência Celular/genética , Sequenciamento de Cromatina por Imunoprecipitação , Cromossomos/genética , Estudos de Coortes , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Biologia Computacional , Metilação de DNA/genética , Epigenômica , Células HCT116 , Humanos , Hibridização in Situ Fluorescente , Microscopia Eletrônica de Transmissão , Simulação de Dinâmica Molecular , RNA-Seq , Análise Espacial , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
16.
Cell ; 176(6): 1325-1339.e22, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30827679

RESUMO

Lineage tracing provides key insights into the fate of individual cells in complex organisms. Although effective genetic labeling approaches are available in model systems, in humans, most approaches require detection of nuclear somatic mutations, which have high error rates, limited scale, and do not capture cell state information. Here, we show that somatic mutations in mtDNA can be tracked by single-cell RNA or assay for transposase accessible chromatin (ATAC) sequencing. We leverage somatic mtDNA mutations as natural genetic barcodes and demonstrate their utility as highly accurate clonal markers to infer cellular relationships. We track native human cells both in vitro and in vivo and relate clonal dynamics to gene expression and chromatin accessibility. Our approach should allow clonal tracking at a 1,000-fold greater scale than with nuclear genome sequencing, with simultaneous information on cell state, opening the way to chart cellular dynamics in human health and disease.


Assuntos
DNA Mitocondrial/genética , Mitocôndrias/genética , Sequência de Bases , Linhagem da Célula , Cromatina , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Genômica/métodos , Células HEK293 , Células-Tronco Hematopoéticas/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Mutação , Análise de Célula Única , Transposases
17.
Immunity ; 48(5): 911-922.e7, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29768176

RESUMO

Unc-93 homolog B1 (UNC93B1) is a key regulator of nucleic acid (NA)-sensing Toll-like receptors (TLRs). Loss of NA-sensing TLR responses in UNC93B1-deficient patients facilitates Herpes simplex virus type 1 (HSV-1) encephalitis. UNC93B1 is thought to guide NA-sensing TLRs from the endoplasmic reticulum (ER) to their respective endosomal signaling compartments and to guide the flagellin receptor TLR5 to the cell surface, raising the question of how UNC93B1 mediates differential TLR trafficking. Here, we report that UNC93B1 regulates a step upstream of the differential TLR trafficking process. We discovered that UNC93B1 deficiency resulted in near-complete loss of TLR3 and TLR7 proteins in primary splenic mouse dendritic cells and macrophages, showing that UNC93B1 is critical for maintaining TLR expression. Notably, expression of an ER-retained UNC93B1 version was sufficient to stabilize TLRs and largely restore endosomal TLR trafficking and activity. These data are critical for an understanding of how UNC93B1 can regulate the function of a broad subset of TLRs.


Assuntos
Endossomos/imunologia , Proteínas de Membrana Transportadoras/imunologia , Chaperonas Moleculares/imunologia , Receptores Toll-Like/imunologia , Animais , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Retículo Endoplasmático/imunologia , Retículo Endoplasmático/metabolismo , Endossomos/metabolismo , Células HEK293 , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Estabilidade Proteica , Transporte Proteico/imunologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Células THP-1 , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo
18.
Cell ; 172(1-2): 162-175.e14, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29328911

RESUMO

Long-term epigenetic reprogramming of innate immune cells in response to microbes, also termed "trained immunity," causes prolonged altered cellular functionality to protect from secondary infections. Here, we investigated whether sterile triggers of inflammation induce trained immunity and thereby influence innate immune responses. Western diet (WD) feeding of Ldlr-/- mice induced systemic inflammation, which was undetectable in serum soon after mice were shifted back to a chow diet (CD). In contrast, myeloid cell responses toward innate stimuli remained broadly augmented. WD-induced transcriptomic and epigenomic reprogramming of myeloid progenitor cells led to increased proliferation and enhanced innate immune responses. Quantitative trait locus (QTL) analysis in human monocytes trained with oxidized low-density lipoprotein (oxLDL) and stimulated with lipopolysaccharide (LPS) suggested inflammasome-mediated trained immunity. Consistently, Nlrp3-/-/Ldlr-/- mice lacked WD-induced systemic inflammation, myeloid progenitor proliferation, and reprogramming. Hence, NLRP3 mediates trained immunity following WD and could thereby mediate the potentially deleterious effects of trained immunity in inflammatory diseases.


Assuntos
Reprogramação Celular , Dieta Ocidental , Epigênese Genética , Imunidade Inata , Memória Imunológica , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Adulto , Idoso , Animais , Células Cultivadas , Feminino , Humanos , Lipoproteínas LDL/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Células Mieloides/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Locos de Características Quantitativas , Receptores de LDL/genética
19.
Methods Mol Biol ; 1714: 1-18, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29177852

RESUMO

This review introduces recent concepts in innate immunity highlighting some of the latest exciting findings. These include: the discovery of the initiator of pyroptosis, Gasdermin D, and mechanisms of inflammatory caspases in innate immune signaling; the formation of oligomeric signalosomes downstream of innate immune receptors; mechanisms that shape innate immune responses, such as cellular homeostasis, cell metabolism, and pathogen viability; rapid methods of cell-to-cell communication; the interplay between the host and its microbiome and the concept of innate immunological memory. Furthermore, we discuss open questions and illustrate how technological advances, such as CRISPR/Cas9, may provide important answers for outstanding questions in the field of innate immunity.


Assuntos
Sistemas CRISPR-Cas , Imunidade Inata , Animais , Comunicação Celular , Humanos , Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Neoplasias/imunologia , Proteínas de Ligação a Fosfato
20.
Cell ; 169(4): 567-569, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28475889

RESUMO

A deep understanding of the immune landscape in human cancer is essential for guiding the development of immunotherapy to benefit more patients with long-lasting efficacy. Now, two studies from Lavin et al. and Chevrier et al. employ mass cytometry to study immune infiltrates in lung adenocarcinoma and clear cell renal cell carcinoma, respectively.


Assuntos
Carcinoma de Células Renais/imunologia , Imunoterapia , Humanos , Metais Pesados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...